

CAMBRIDGE CENTRE

UNIVERSITY OF CAMBRIDGE

Cambridge University Hospitals NHS Foundation Trust

CRUK Cambridge Centre MRes rotation project

Rotation Project Title	Checkpoint control of DNA replication prevents mutagenesis in normal and cancer cells
Head of Laboratory (PI) Name	Philip Zegerman
Second supervisor if applicable	
Programme	СМВ
Supervisor's Email	Paz20@cam.ac.uk
Laboratory Location	Gurdon Institute

Project Outline	Aims and objectives
	Mutation is the root cause of cancer and is a consequence of many chemotherapies,
	acting as a driver of resistance. By understanding the root causes of mutagenesis we
	aim to identify pathways that are required to generate cancer mutations and
	therefore identify new ways to diagnose and treat patients.
	You will use our recently devised assay in budding yeast to rapidly screen for
	pathways required for an unexplained form of structural mutation caused by
	replication template switching. Preliminary data suggests that the checkpoint kinases
	are key regulators preventing this form of mutagenesis. This information will be used
	to test the onset of template switch-dependent mutations in both normal and
	cancerous human cells, before and after chemotherapy treatment.
	Together this project will provide new insights into the causes of cancer mutations
	and may provide ways to prevent such mutations during chemotherapy.
Experimental plan	Use established mutagenesis assays in yeast to rapidly screen for the role of multiple
	pathways in prevention of template switching. Use these strains to perform whole
	genome sequencing (WGS) to identify genetic loci that are prone to such mutations.
	With this information, inhibit these pathways in human cells and screen for structural
	mutations using WGS.
Iviain Techniques	Mutagenesis and yeast genetics
	Whole genome Illumina library prep and sequencing
	Bioinformatic analysis of structural variants using multiple alignments
	Human cancer cell culture
Key References	Helicase subunit Cdc45 targets the checkpoint kinase Rad53 to both replication
	initiation and elongation complexes after fork stalling. Can and Zegerman. Mol Cell.
	2018. Under review
	Mechanisms underlying mutational signatures in human cancers.
	Helleday T ¹ et al. <u>Nat Rev Genet.</u> 2014 Sep;15(9):585-98.