CRISPRcleanR opens new ways for discovering novel cancer drug targets, by correcting CRISPR-Cas9 drop-out screens

CRISPR-Cas9 is a powerful technology with important applications in cancer research, as it can help identify genes that are essential for cancers to grow. However, cancer cells can accumulate extra copies of specific genes, which are then wrongly classed as being essential for cancer. Researchers from the Wellcome Sanger Institute have created a new computational tool, called CRISPRcleanR, that accounts for this undesired bias in the data derived from CRISPR-Cas9 screens.

Published in BMC Genomics and as part of the Cancer DepMap at the Wellcome Sanger Institute, the method allows better interpretation and prioritising of gene hits for the development of new anti-cancer therapies. Notably, this approach does not require any information about the number of extra gene copies. The method will improve the analysis of CRISPR-Cas9 knockout screens to identify essential cancer genes.

17 Aug 2018