The proneural wave in the Drosophila optic lobe is driven by an excitable reaction-diffusion mechanism

During development, neural stem cells transition through different states that maintain a balance between proliferation and differentiation. One way to coordinate these transitions is through the propagation of self-organised waves of signalling activity that travel across a tissue. In the developing visual system of Drosophila melanogaster, a wave of proneural gene expression (the 'proneural wave') transforms symmetrically dividing neuroepithelial cells into asymmetrically dividing neural stem cells that generate neurons and glia.

In their new paper published in eLife, Professor Andrea Brand's Group has worked together with Professor Ben Simons' Group (both at the Wellcome/Cancer Research UK Gurdon Institute) to describe a mechanistic model of the emergence and propagation of the proneural wave. Through a combination of genetic manipulation and biophysical theory, the authors suggest that the proneural wave is driven by an excitable reaction-diffusion mechanism that results in a travelling pulse of signalling activity and gene expression. The study proposes a generic and robust mechanism to establish the sequential transition of developing tissues.

3 Mar 2019